1 Overview TGM1P series moulded case circuit breaker (hereafter referred to as ECB) is suitable for power distribution system. It is a mechanical switch used to make, carry, and break current under normal circuit conditions and to make and carry current for some time and break current under specified abnormal circuit for protection of lines and equipment in case of overload or short circuit of power distribution line. This series circuit breaker has overload and short-circuit protections and motor electric operating mechanism, and there are manual and electric models available. It is equipped with a locking system to ensure safety during maintenance and to prevent disconnection by customer. It has a cage wiring terminal for convenient wiring by customer. It has a threaded sealing plug and a protective cover, with a seal strip provided to prevent removal by customer without permission. With isolation function, the corresponding symbol is __/__. Standard: IEC 60947-1, IEC 60947-2, SEC Power Company Technical Specifications. #### 2 Type Designation #### 3.1 Basic parameters of ECB Table 1 | Table 1 | | | | | | | | |--------------------------------------|---|----------------------------|-------------------------|-----------|---------------|--|--| | | | Basic paran | neters | | | | | | Frame | e current | 250 | 400 | 630 | 1250 | | | | Rated operation | ng voltage Ue(V) | | AC230/240V, A | C400/415V | | | | | Rated insulati | on voltage Ui(V) | 800 | | 1000 | | | | | | Rated impulse withstand voltage
Uimp(kV) | | 8 | | | | | | Rated frequency Hz | | AC (50/60) Hz | | | A | | | | Rated current In(A) | | 125/150/160
200/225/250 | 250/300/315
/350/400 | 500/600 | 800/1000/1250 | | | | Short-circuit prote | ection setting value Ii | | 10In | | | | | | Rated limit short- | AC230V/240V | 25 | 25 | 65 | 65 | | | | circuit breaking
capacity Icu(kA) | AC400V/415V | 25 | 25 | 40 | 40 | | | | Rated operate short- | AC230V/240V | 25 | 25 | 65 | 65 | | | | circuit breaking
capacity Ics(kA) | AC400V/415V | 25 | 25 | 40 | 40 | | | | Working Environment | | | +55°0 | C | | | | Table 1, Continue | Basic parameters | | | | | | |--|-----------------------|-------------|-----------|------|--| | Applicable working environment temperature | -10°C ∼ +75°C | | | | | | Usage category | A | | | | | | Flashover distance (mm) | ≤50 ≤100 ≤100 ≤100 | | | | | | Mechanical life (times) | 7000 | 5000 | 4000 | 2500 | | | Electrical life (times) | 1000 1000 1000 500 | | | | | | m: | Thermal magnetic trip | | | | | | Trip method | | Single magn | etic trip | | | #### 3.2 Basic parameters of motor Table 2 | Model | TGM1P-250 | TGM1P-400 | TGM1P-630 | TGM1P-1250 | | | | |-----------------------------------|-----------|-----------|-----------|------------|--|--|--| | Rated control circuit voltage (V) | | AC230V | | | | | | | Starting power (W) | 50 | 70 | 70 | 44 | | | | | Normal operating power (W) | 12 | 19 | 19 | 3 | | | | #### 3.3 Wiring diagram of control part - $\ensuremath{\textcircled{1}}$ Input power voltage: AC230V/240V. - ② The meter outputs AC250V/1A signal to disconnect circuit breaker. #### 3.4 ECB control logic Table 3 | Operating mode | Function | Operation method | ECB
state after
operation | Meter relay
signal status | Window
indication
color | |-------------------------------------|--|--|---------------------------------|------------------------------|-------------------------------| | | | | TRIP | NC | White | | For the first installation, | Manual operation from trip to open | Turn the operating handle counterclockwise | OFF | NC | Green | | the product is at the trip position | Manual operation from open to closed | Turn the operating handle clockwise | ON | NC | Red | | • | After installation, when the user's signal line is disconnected, ECB shall open if the meter signal is a closing signal. | | | | | | Manual
mode | Manual operation from closed to open | Counterclockwise manual operation | OFF | NC | Green | Table 3, Continue | Operating mode | Function | Operation method | ECB
state after
operation | Meter relay
signal status | Window
indication
color | |----------------|---|--|---------------------------------|------------------------------|-------------------------------| | | When the meter relay issues a
remote closing command, ECB
shall be still in the open state
rather than closed state | Meter relay issues a remote closing command | OFF | NC | Green | | | The intelligent meter relay
command is a closing command
to allow the ECB is manually
operated to the closing state from
the open state | Turn the operating handle clockwise | ON | NC | Red | | | The intelligent meter relay issues a
remote open command to open the
ECB from the closed state | Meter relay issues a remote open command | OFF | NO | Green | | | The intelligent meter has issued
an opening command for manual
closing operation at this time, and
ECB shall open automatically after
5 seconds | Turn the operating handle clockwise | OFF after
5-sec (min.) | NO | Green | | Manual
mode | The opening command issued remotely from the intelligent meter becomes a closing command, and the original opening state of ECB is unchanged | Meter relay issues a remote closing command | OFF | NC | Green | | | When the meter relay signal is
at the closed state, ECB will be
closed automatically when the
manual mode is switched to the
auto mode. | Turn the manual/auto
transfer switch from left
to right | ON | NC | Red | | | When the meter relay issues a closing signal, with a test button pressed, ECB will trip | Press the test button with a tool | TRIP | NC | White | | | Remote two-step re-trip command is not allowed for closing after trip | Operate the relay to issue
an open signal and then a
closed signal | TRIP | NC | White | | | Meter relay signal is at the open
state; ECB is at the locked state
from the unlock state, ECB trips | Operate #660 key | TRIP | NO | White | | | Meter relay controls auto opening state remotely | Meter relay signal
becomes the open state
from the closed state | OFF | NO | Green | | | Manually operate for closing; at
this time the intelligent meter relay
is at the open state, and ECB will
open automatically after 5 seconds | Turn the operating handle clockwise in the manual mode | OFF after
5-sec (min.) | NO | Green | | | Meter relay will be closed remotely and automatically | Meter relay signal
becomes the closed state
from the open state | ON | NC | Red | | Auto mode | The intelligent meter remote
command is a closed command,
with test button pressed for
tripping | Press the test button with a tool | TRIP | NC | White | | , | When the meter relay signal is a
open/closed command, ECB is
in the trip state, and a two-step
remote re-trip command is issued
for closing | Open remotely and then closed | ON | NC | Red | | | Lock ECB for auto trip | Operate #660 key | TRIP | NO | White | | | Unable to manually close after locking | Unable to close successfully with a operating handle | TRIP | NO | White | | Lock | Unable to achieve remote closing after locking | Unable to close with a remote command | TRIP | NO | White | | | Unable to operate the test button after locking | Unable to press the test button | TRIP | NO | White | Note: ECB opening and closing time is 15s. # Power Distribution Electrics # **TGM1P Series External Circuit Breaker** #### 4 External Picture (for reference only, with actual product prevailed) - 1. Logo 2. Sign parameter sticker palce 3. Closing indicator Red - 4. Opening and closing indication visual window 5. Opening indicator Green - 6. Emergency trip 7. Control power line interface Signal line ingerface 8. Disconnect lock mark - 9. Lock 10. Unlock sign 11. Manual handle 12. Handle operation place #### **5 Outline and Installation Dimensions** #### 5.1 Outline and installation dimensions # **TENGEN** # **TGM1P Series External Circuit Breaker** TGM1P-400 TGM1P-630 # Power Distribution Electrics # **TGM1P Series External Circuit Breaker** TGM1P-1250 Table 4 | | Code | TGM1P-250 | TGM1P-400 | TGM1P-630 | TGM1P-1250 | |----------------------------|------|-----------|-----------|-----------|------------| | | W | 107 | 140 | 182 | 210 | | | L | 165 | 257 | 270 | 278 | | | Н | 139 | 150 | 154 | 176 | | Outline
dimensions | G | 29 | 29 | 35 | 51 | | | L1 | 300 | 452 | 440 | 374 | | | L2 | 107 | 200 | 200 | 174 | | | H1 | 68 | 96 | 99 | 97 | | | A | 125.4 | 215.5 | 230.5 | 260 | | Installation
dimensions | В | 35 | 44 | 58 | 70 | | dimensions | d | 5 | 6.5 | 6.5 | 8 | # Power Distribution Electrics # **TGM1P Series External Circuit Breaker** #### 5.2 Section area of product connecting copper wire #### Table 5 | Rated current | 125 | 160 | 180
225 | 250 | 315
350 | 400 | |---|-----|-----|------------|-----|------------|-----| | Section area of wire (mm ²) | 50 | 70 | 95 | 120 | 185 | 240 | #### Table 6 | | | | Copper wire | | | |---------------|----------|---|-------------|---|--| | Rated current | Quantity | Section area of wire (mm ²) | Quantity | Section area of wire (mm ²) | | | 500 | 2 | 150 | 2 | 30x5 | | | 630 | 2 | 185 | 2 | 40x5 | | | 800 | 2 | 240 | 2 | 50x5 | | | 1000 | - | - | 2 | 80x5 | | | 1250 | - | - | 2 | 100x5 | | #### 6 Screw Tightening Torque #### Table 7 | Model | TGM1P-250 | TGM1P-400 | TGM1P-630 | TGM1P-1250 | |------------------------------|-----------|-----------|-----------|------------| | Nominal thread diameter (mm) | M8 | M10 | M12 | M12 | | Tightening torque (N•m) | 12 | 22 | 28 | 30 | | Breaking torque (N•m) | 18 | 26 | 33 | 33 | #### **7 Screw Tightening Torque** #### Table 8 | Test current name | Setting current multiple | Conven | tion time | Initial state | | |-------------------------------|--------------------------|--------|-----------|---------------|--| | Test current name | Setting current muniple | In≤63A | In > 63 | mitiai state | | | Conventional non-trip current | 1.05 In | ≥1h | ≥2h | Cold state | | | Conventional trip current | 1.30 In | < 1h | < 2h | Hot state | | The instantaneous operation characteristic of the circuit breaker used for power distribution is set to $10 \text{In} \pm 20\%$ (the reference ambient temperature is $\pm 55^{\circ}\text{C}$). # Power Distribution Electrics # **TGM1P Series External Circuit Breaker** #### 8 TGM1P Series Product Time/Current Characteristic Curve ## Temperature compensation curve of 500-800A ## Temperature compensation curve of 1000-1250A # Power Distribution ## **TGM1P Series External Circuit Breaker** #### 9 Operating Conditions - 9.1 Ambient temperature: Normal operating temperature: -10°C $\sim +70$ °C; - 9.2 Installation category: Main circuit: III; other auxiliary circuit: II. - 9.3 Pollution degree: 3. - 9.4 Altitude: Not exceed 2,000 meters; derating is required when greater than 2,000 meters. - 9.5 Atmospheric conditions - (1) The relative humidity shall not exceed 50% at ambient temperature +40°C; - (2) A higher relative humidity is allowed at a lower temperature. For example, up to 90% at 20° C. Special measures shall be taken for condensations caused by temperature changes. #### 9.6 Impact vibration Circuit breaker passes the test specified in GB/T2423.10, and can withstand mechanical vibration with a frequency $2Hz \sim 13.2Hz$ and a displacement of $\pm 1mm$ and with a frequency of $13.2Hz \sim 100Hz$ and a acceleration of $\pm 0.7g$.